

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

GAMCO CORPORATION

SERIES/MODEL: BD-325 Series Balcony Door TYPE: Swinging Door with Frame

Summary of Results				
Thermal 7	Thermal Transmittance (U-Factor)			
Condensa	Condensation Resistance Factor - Frame (CRF _f) 52			
Condensation Resistance Factor - Glass (CRF _g) 66			66	
Unit Size	Unit Size: 39-3/8" x 78-3/4"			
Layer 1:	1/4"	Clear		
Gap 1:	0.53"	A1-D: Aluminum Spacer	90% Argon*	
Layer 2:	1/4"	PPG Solarban 60 (e=0.035*, #3)		

Reference must be made to Report No. E5290.01-116-46, dated 04/21/15 for complete test specimen description and data.

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

GAMCO CORPORATION 131-10 Maple Avenue Flushing, New York 11355

Report Number: E5290.01-116-46

Test Date: 04/14/15 Report Date: 04/21/15

Test Sample Identification:

Series/Model: BD-325 Series Balcony Door

Type: Swinging Door with Frame

Test Sample Submitted by: Client

Test Procedure: The condensation resistance factor (CRF) and thermal transmittance (U) were determined in accordance with AAMA 1503-09, *Voluntary Test Method for Thermal Transmittance and Condensation Resistance of Windows, Doors and Glazed Wall Sections*

Average warm side ambient temperature
 Average cold side ambient temperature
 Average cold side ambient temperature

3. 15 mph dynamic wind applied to test specimen exterior.

4. $0.0" \pm 0.04"$ static pressure drop across specimen.

Test Results Summary:

1. Condensation resistance factor - Frame (CRF _f)	52
Condensation resistance factor - Glass (CRF _g)	66
2. Thermal transmittance due to conduction (U)	0.43
(U-factors expressed in Btu/hr·ft²·F)	

Test Sample Description:

Frame:

Material:	AU (0.16"): Aluminum with Thermal Improvement*					
Size:	39-3/8" x 78-3/4"	39-3/8" x 78-3/4"				
Daylight Opening:	N/A	N/A Glazing Method: N/A				
Exterior Color:	Clear	Exterior Finish:	Anodized			
Interior Color:	Clear Interior Finish: Anodized					
Corner Joinery:	Mitered / Keys & Screws / Sealed					

^{*}Mill-finish sill was AU (0.16"), Head and Jambs were AT (0.28")

Panel:

Material:	AT (0.28"): Aluminum with Thermal Breaks - All Members					
Size:	371/4" x 77"					
Daylight Opening:	30-1/2" x 70-1/2" Glazing Method: Exterior					
Exterior Color:	Clear	Exterior Finish:	Anodized			
Interior Color:	nterior Color: Clear Interior Finish: Anodized					
Corner Joinery:	Mitered / Keys & Screws / Sealed					

Glazing Information:

Layer 1:	1/4"	Clear	
Gap 1:	0.53"	A1-D: Aluminum Spacer	90% Argon*
Layer 2:	1/4"	PPG Solarban 60 (e=0.035*, #3)	
Gas Fill Method:		Single-Probe Method*	
Desiccant:		Yes	

^{*}Stated per Client/Manufacturer N/A Non-Applicable

Test Sample Description: (Continued)

Weatherstripping:

Description	Quantity	Location
Flexible hollow bulb gasket	l row	Frame and panel perimeter, exterior glazing perimeter

Hardware:

Description	Quantity	Location
Multi-point lock/dead-bolt assembly	1	Lock stile
Metal keeper	3	Lock jamb
Metal hinges	4	Hinge jamb/stile
Single-arm hinge	1	Head/top rail
Aluminum door stop	3	Jambs and head

Drainage:

Drainage Method	Size	Quantity	Location
Weepslot	0.88" x 0.25"	2	Sill

Test Duration:

- 1. The environmental systems were started at 17:00 hours, 04/13/15.
- 2. The thermal performance test results were derived from 01:59 hours, 04/14/15 to 05:59 hours, 04/14/15.

Condensation Resistance Factor (CRF):

The following information, condensed from the test data, was used to determine the condensation resistance factor:

T_h	=	Warm side ambient air temperature	69.80 F
T_{c}	=	Cold side ambient air temperature	-0.41 F
FT_p	=	Average of pre-specified frame temperatures (14)	36.58 F
FT_r	=	Average of roving thermocouples (4)	31.18 F
W	=	$[(FT_p - FT_r) / (FT_p - (T_c + 10))] \times 0.40$	0.080
FT	=	$FT_p(1-W) + W (FT_r) = Frame Temperature$	36.15 F
GT	=	Glass Temperature	45.74 F
CRF_g	=	Condensation resistance factor – Glass	66
		$CRF_g = (GT - T_c) / (T_h - T_c) \times 100$	
CRF_f	=	Condensation resistance factor – Frame	52
		$CRF_f = (FT - T_c) / (T_h - T_c) \times 100$	

The CRF number was determined to be 52 (on the size as reported). When reviewing this test data, it should be noted that the frame temperature (FT) was colder than the glass temperature (GT) therefore controlling the CRF number. Refer to the 'CRF Report' page and the 'Thermocouple Location Diagram' page of this report.

Thermal Transmittance (U_c):

T_{h}	=	Average warm side ambient temperature	69.80 F
T_{c}	=	Average cold side ambient temperature	-0.41 F
P	=	Static pressure difference across test specimen	0.00 psf
		15 mph dynamic perpendicular wind at exterior	
Nominal sample area 21.53 ft ²			21.53 ft^2
Total measured input to calorimeter 707.22 Btu/hr			707.22 Btu/hr
Calorimeter correction 56.35 Btu/hr			56.35 Btu/hr
Net specimen heat loss 650.87 Btu/h			650.87 Btu/hr
U	=	Thermal Transmittance	$0.43 \text{ Btu/hr} \cdot \text{ft}^2 \cdot \text{F}$

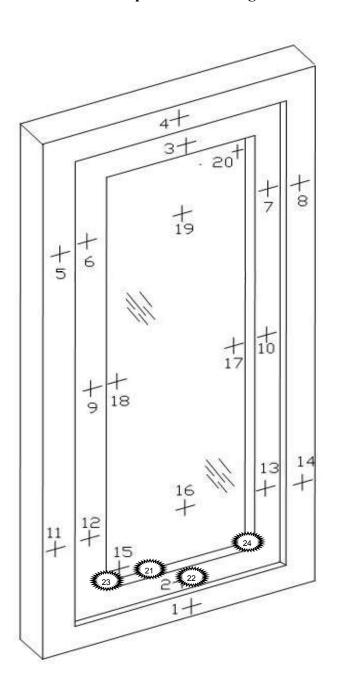
Glazing Deflection:

	Panel
Edge Gap Width	0.53"
Estimated center gap width upon receipt of specimen in laboratory (after stabilization)	0.56"
Center gap width at laboratory ambient conditions on day of testing	0.56"
Center gap width at test conditions	0.47"

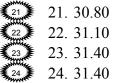
The sample was inspected for the formation of frost or condensation, which may influence the surface temperature measurements. The sample showed no evidence of condensation/frost at the conclusion of the test.

Prior to testing the specimen was sealed with silicone on the interior side and checked for air infiltration per Section 9.3.4.

Required annual calibrations for the Architectural Testing Inc. 'thermal test chamber' (ICN 000001) in York, Pennsylvania were last conducted in May 2014 in accordance with Architectural Testing Inc. calibration procedure. A CTS Calibration verification was performed December 2014. A Metering Box Wall Transducer and Surround Panel Flanking Loss Characterization was performed December 2014.


CRF Report

Time:	03:59	04:29	04:59	05:29	05:59	AVERAGE			
Pre-specified Thermocouples - Frame									
1	34.68	34.66	34.62	34.56	34.58	34.62			
2	31.14	31.12	31.10	31.06	30.99	31.08			
3	35.95	35.92	35.96	35.96	36.04	35.96			
4	44.90	44.88	44.89	44.95	44.98	44.92			
5	45.22	45.18	45.27	45.37	45.39	45.28			
6	36.35	36.37	36.39	36.49	36.49	36.42			
7	36.26	36.25	36.31	36.36	36.36	36.31			
8	38.79	38.86	39.08	39.32	39.37	39.08			
9	35.09	35.06	35.14	35.10	35.12	35.10			
10	33.89	34.04	34.05	33.97	33.86	33.96			
11	40.25	40.21	40.18	40.13	40.14	40.18			
12	33.67	33.50	33.49	33.50	33.52	33.53			
13	32.50	32.44	32.37	32.34	32.27	32.39			
14	33.57	33.52	33.34	33.16	33.11	33.34			
FT_{P}	36.59	36.57	36.58	36.59	36.59	36.58			
Pre-spe	cified Thermocou	ples - Glass							
15	34.21	34.20	34.16	34.08	34.03	34.14			
16	56.57	56.56	56.54	56.57	56.53	56.55			
17	41.61	41.56	41.61	41.67	41.63	41.62			
18	44.18	44.17	44.20	44.20	44.23	44.20			
19	57.73	57.69	57.72	57.68	57.68	57.70			
20	40.20	40.25	40.21	40.25	40.24	40.23			
GT	45.75	45.74	45.74	45.74	45.72	45.74			
	oint (Roving) Ther								
21	30.80	30.80	30.80	30.80	30.80	30.80			
22	31.10	31.10	31.10	31.10	31.10	31.10			
23	31.40	31.40	31.40	31.40	31.40	31.40			
24	31.40	31.40	31.40	31.40	31.40	31.40			
FT_R	31.18	31.18	31.18	31.18	31.18	31.18			
W	0.08	0.08	0.08	0.08	0.08	0.08			
FT	36.16	36.14	36.15	36.16	36.15	36.15			
Warm	Side - Room Ambi		-	60.00	60.01	60.01			
G 110	69.82	69.80	69.80	69.80	69.81	69.81			
Cold Si	de - Room Ambier	-		0.40	0.45	0.42			
	-0.43	-0.41	-0.41	-0.40	-0.45	-0.42			
$CRF_{\mathbf{f}}$	52	52	52	52	52	52			
$CRF_{\mathbf{g}}$	66	66	66	66	66	66			



Thermocouple Location Diagram

Cold Point Locations

Architectural Testing, Inc. will service this report for the entire test record retention period. Test records that are retained such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation will be retained by Architectural Testing, Inc. for the entire test record retention period. The test record retention end date for this report is April 14, 2019.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

Digitally Signed by: Ryan P. Moser

Ryan P. Moser Senior Technician Digitally Signed by: Shon W. Einsig

Shon W. Einsig
Senior Technician
Individual-In-Responsible-Charge

Show W. Cinsig

RPM:klb E5290.01-116-46

Attachments (pages): This report is complete only when all attachments listed are included.

Appendix-A: Drawings (10)

Architectural Testing, Inc. is accredited by the International Accreditation Service (IAS) under the specific test methods listed under lab code TL-144, in accordance with the recognized International Standard ISO/IEC 17025:2005. The laboratory's accreditation or test report in no way constitutes or implies product certification, approval, or endorsement by IAS.

Revision Log

Rev. #	Date	Page(s)	Revision(s)
.01R0	04/21/15	All	Original Report Issue. Work requested by
			Howard Nguyen of Gamco Corporation